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Abstract: -  The Elliptic Curve Digital Signature Algorithm  (ECDSA) is the elliptic curve analogue of the 
Digital Signature Algorithm (DSA) [2]. It is well kn own that the problem of discrete logarithm  is NP-hard on 
group on elliptic curve (EC) [5].  The orders of groups of  an algebraic affine and projective curves of Edwards  
[3, 9] over the finite field F np

 is studied by us. We research Edwards algebraic curves over a finite field, which  

are one of th e most promising supports of sets of points which are used for fast group operations [ 1]. We 
construct a new method for counting the order of a n Edwards curve [F ]d pE over a finite field Fp . It should be 
noted that this method can be applied t o the order of elliptic curves due to the birational equivalence between  
elliptic curves and Edwar ds curves. The method we have proposed has much less complexity  2

2logO p p  at 

not large values p   in comparison with the best Schoof  basic algorithm with complexity
8
2(log )nO p , as well as 

a variant of the Schoof algorithm that uses fast arithmetic, which has complexity 4
2(log )nO p , but works only for 

Elkis or Atkin primes. We not only find a specific set of coefficients with corresponding field characteristics for 
which these curves are su persingular, but we additionally find a general for mula by which one can determine 
whether a curve [F ]d pE   is supersingular over  this field or not. The symmetric of the Edwards curve form  and 
the parity of all degrees made it possible to represen t the shape curves and apply the method of calculating the 
residual coincidences. 

A birational isomorphism between the Montgomery curve and the Edwards curve is also constructed. A one-
to-one correspondence between the Ed wards supersingular curves and Montg omery supersingular curves is 
established. The criterion of supersingularity for Edwards curves is found over  F np

. 
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1 Introduction 
The method of finding th e order of an algebraic 
curve over a finite fiel d np

F  are relat ed with 

constructing of curves of  given order. To construct  
cryptosystem based on ellip tic curve we need to 
analyze  the order of  a group of el liptic curve 
points. Our method gives an approach to co nstruct 
Edwards curves of determined order that if very 
important if cryptography and coding theory. It was 
accepted in 1999 as an ANSI standard and in 2000 
as IEEE and NIST standards. 

One of the fundamental problems in EC  
cryptography is the generation of cr yptographically 
secure ECs over prime fields, suitable for use in  
various cryptographic applications. A ty pical 

requirement of all such applications is that the order 
of the EC [22 ].  One of e ssential requirment for EC 
is its order (num ber of elem ents in the algebraic 
structure induced by  the EC) possesses cert ain 
properties (e.g., robustnes s against known attacks 
[23], small prime factors [22, 24], etc), which gives 
rise to the  problem of how such E C can be 
generated. One of good decision of this tusk is curve 
of big prime order [24]. Also very important for this 
goal is avoidance curve of order  p + 1 because of it 
is tractable by to pairingbased att acks. As we have 
discussed before, supersi ngular elliptic curves ar e 
vulnerable to pairingbased  attacks. Therefore we 
find a criterion of Edwards curve supersingularit y 
[25]. The method of finding the order of a n 
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algebraic curve over a fi nite field F np
is now very 

relevant and is at the center of many mathematical 
studies in connection with the use of groups of  
points of cu rves of genus 1. In our article, this 
problem is solved.  

Our algorithm has much less complexity for 
algebraic extensions with a la rge degree of finite  
fields. This is so because choosing suffi ciently large 

values n, we ontain 
8
2(log )nO p  the value is much 

larger than  2
2logO p p  for a fixed v alue p .  The 

criterion of supersingularit y of the Edw ards curves 
is found over F np

. We additionall y propose a 

method for counting the points fr om Edwards 
curves and elliptic curves in response to an earlier 
paper by Schoof [8]. We consider the algebraic 
affine and projective Edw ards curves over a finite 
field. We not only find a s pecific set of coefficients  
with corresponding field characteristics for which  
supersingular, but we additionall y find a general 
formula by which one can determ ine whether a 
curve [F ]d pE is supersingular ove r this field o r not. 
All proofs and anal ytical results belong t o 
Skuratovskii R. and computational examples, 
confirming statements, are made by Osadchyy V.  
 

2 Algebraic analyses of the curve and 
Curve Order Calculation Method 
We recall that the twisted Edwards curve with 
coefficients *, pa d F , 1, 2, ,d p a d     is the 
curve , :a dE  

2 2 2 2 *1 , , , ( ) 0,pax y dx y a d F ad a d       

It should be noted that a twisted Edwards curve is 
called an Edwards curve when 1a  . We denote by 

dE   the Edwards curve with coefficient  *
pd F  

which is defined as 2 2 2 21x y dx y    over pF . The 
projective curve has form

2 2 2 2 4 2 2( , , )F x y z ax z y z z dx y    . The special 
points are the infinitely distant points (1,0,0)   and 
(0,1,0)   and therefore we find its singularities at 
infinity in the corresponding affine components

1 2 2 2 4 2:A az y z z dy    , 2 2 2 2 4 2: .A ax z z z dx  
These are simple singularities.  

We describe the structure of the local ring at the  
point 1p   whose elements are quotients of  functions 

with the form  ( , , )( , , )
( , , )

f x y z
F x y z

g x y z
 , where the 

denominator cannot take  the value of 0  at the  

singular point 1p . In particular, we note that a loca l 
ring which has two singularities consists of 
functions with the denominators are not divisible by
( 1)( 1)x y  . 

We denote b y p
p dim /

p
 O

O , where pO   denotes 
the local ring at the singular point p   which is  
generated by the relations of regu lar functions 

p :( , ( 1)( 1)) 1f
g x y

g

 
    
 

O   and pO   denotes the 

whole closure of the local ring at the singular point 
p . 

We find that dim / 1p

pp  O
O   is the dim ension 

of the factor as a vector s pace. Because the basis of  

extension p

p

O
O   consists of just one element at 

each distinct point, we obtain that 1p  . We the n 
calculate the genus of the curve ac cording to Fulton 
[4].

* ( 1)( 2)( ) ( ) 3 2 1,
2p p

p E p E

n n
C C   

 

 
       

where ( )C  denotes the arithmetic genus of the  
curve C   with parameter deg( ) 4n C  . It should be 
noted that the supersingular points were discovered  
in [10]. Recall the curve has a genus of 1 and as 
such it is kn own to be is omorphic to a flat cubic 
curve, however, the curve is i mportantly not elliptic 
because of its singularity in the projective part. Both 
the Edwards curve and th e twisted Edwards curve  
are isomorphic to so me affine part of the elliptic 
curve. The Edwards curve after normaliz ation is 
precisely a curve in the Weierstrass normal form, 
which was proposed by Montgomery [1] and will be 
denoted by ME . Koblitz [ 4,5] tells us that  one ca n 
detect if a curve is supersingular using the search for 
the curve when that curve  has the same number of 
points as its torsion curve. Also an elliptic curve E   
over qF   is called supersingular if for ev ery finite 
extension rq

F  there are no points in the group  

( )rq
E F  of order p [17]. It is known [ 1] that the 

transition from an Edw ards curve to the relat ed 
torsion curve is determined by  the reflection 

    1, , ,x y x y x
y

 
  
 

 . 

We recall an im portant result from  Vinogradov 
[13] which will act as criterion for supersingularity.  
Lemma 2.1. Let Nk   and Pp .  Then 

1

1

0  ( mod  ), | ( 1),
1 ( mod  ), | ( 1),  

p
n

k

p n p
k

p n p





 
  

   
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where  | ( 1)n p   denotes that n  is divisible by 1p  . 
The order of a curve is precisely  the number of its 
affine points with a neutral ele ment, where the 
group operation is well defined. It is known that the  
order of 2 2 2 21x y dx y    coincides with the order 
of the curve 2 2 1 2 21x y d x y    over .pF  We will  
now strengthen an existing result given in [10]. We 
denote the number of points with a neutral element 
of an affine Edwards curve over the finite field Fp   
by [ ]d pN   and the number of points on the projective 
curve over the same field by [ ]d pN  . 
Theorem 2.1.  If 3( mod  4)p   is prime and 
the following condition of  supersingularity 

1
2

2
1

0 2

( ) 0( mod  ),

p

j j
p

j

C d p






             (1) 

is true th en the or ders of t he curves 
2 2 2 21x y dx y     and 2 2 1 2 21x y d x y    over pF  

are equal to [ ] 1,d pN p   when 1d

p

 
  

 
,  and 

[ ] 3,d pN p  when 1d

p

 
 

 
.  

Proof. Consider the curve dE : 
2 2 2 21 .x y dx y                         (2) 

Transform it into the form 2 2 2 2(1 ) 1y dx y x    , then 
we express 2y  by applying a rational transformation 

which lead us to the curve 
2

2
2 2

1
1

x
y

dx y





 . 

For analysis we transform it into the curve 
2 2 2( 1)( 1).y x dx         (3) 

We denote t he number of poin ts from an affine 
Edwards curve over the finite field pF  by [ ]d pM  . 

This curve (3) has [ ] [ ] 1d p d p

d
M N

p

 
   

 
points, 

which is precisely  1d

p

 
 

 
 greater than the num ber 

of points of curve dE . Note that d

p

 
 
 

 denotes the 

Legendre Symbol. Let 0 1 2 2, , , pa a a    be the 
coefficients of the poly nomial 

2 2
0 1 2 2

p
pa a x a x 
  , which was obtained from 

1 1
2 22 2( 1) ( 1)

p p

x dx
 

    after opening the bra ckets. 
Thus, summing over all x  yields  

1 11 1
2 2 22 2

[ ]
0 0
1 1 1

12 2 22 2 2
0

1 (( 1)( 1)) ( 1)

( 1) ( 1) ( 1) ( mod  ).

p pp p

d p
x x

p p p
p

x

M x dx p x

dx x dx p

  

 

  




       

    

 


  

By opening the brackets i n 
1 1

2 22 2( 1) ( 1) ,
p p

x dx
 

   we 

have 
1 1

2 2
2 2 ( 1) ( mod  ).

p p

p

d
a d p

p

 



 
     

 
 So, using 

Lemma 2.1 we have  

[ ] 1( mod  ).d p p

d
M a p

p 

 
   

 
  (4) 

We need to prove t hat [ ] 1( mod  )d pM p  if 
3( mod  8)p   and [ ] 1( mod  )d pM p  . We therefore 

have to show that [ ] 1( ) ( mod  )d p p

d
M a p

p      for 

3( mod  4)p    if 
1

2
2

1
0 2

( ) 0( mod  ).

p

j j
p

j

C d p






  If we 

prove that  1 0( mod  )pa p  , then it will fol low from 
(3). Let us determ ine 1pa   according to N ewton's 
binomial formula: 1pa   is equal to the coef ficient at 

1px   in t he polynomial, which is obtained as a 

product  
1 1

2 22 2( 1) ( 1)
p p

x dx
 

  . So, 
1

1 2
22

1 1
0 2

( 1) ( ) .

p
p

j j
p p

j

a d C




 


    Actually, the following 

equality holds:   

1
1 1 1 12 ( ) 22 2 2 2
1 1

0 2 2
1 1

1 1 12 2
22 2 2

1 1 1
0 02 2 2

( )( 1) ( ) ( 1)

( 1) ( 1) ( ) .

p
p p p p

j j jj j j
p p

j

p p
p p p

jj j j j
p p p

j j

d C d C

d C C d C


   
   

 


 
  



  
 

   

    



 

  

Since 
1

2
2

1 1
0 2

( ) ,

p

j j
p p

j

a C d



 


    then exact num ber of 

affine points on no n supersingular curv e (3) is the 
following [ ] 2 2 1d p p pM a a     exactly: 

1
2

2
[ ] 1

0 2

( ) ( mod  ).

p

j j
d p p

j

d
M C d p

p






 
   

 
       (5) 

According to the condition of this theorem  1 0,pa    
therefore [ ] 2 2 ( mod )d p pM a p  . Consequently, in 
the case when 3( mod  4),p  where p is prim e and 
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1
2

2
1

0 2

( ) 0( mod  ),

p

j j
p

j

C d p






  the curve  dE   has 

[ ] ( 1) 1 2d p

d d d
N p p

p p p

     
           

     
    (6) 

affine points and a group of points of the curve 
completed by singular points has 1p    points.   

Exact number of the poi nts has upper boun d 
2 1p   because for every  0x    corresponds two 
valuations of y , but for 0x   we have only  one 
solution 0.y    Taking into account that  px F  we 
have exactly p  values of x . Also there are 4 pairs  
( 1,0) and (0, 1)  which are points of dE  thus 

[ ] 1d pN  . Thus, [ ] 1d pN p  . This com pletes the 
proof. 

Corollary 2.1. The orders of the curves 
2 2 2 21x y dx y     and 2 2 1 2 21x y d x y    over pF  

are equal to [ ] [ ]1 ,d p d pN p N      when ( ) 1,d

p
       

and  [ ] [ ]3 4,d p d pN p N     when ( ) 1d

p
  iff  

3(mod  4)p   is prime and 
1

2
2

1
0 2

( ) 0( mod  )

p

j j
p

j

C d p






 . 

In more details conditions   [ ] [ ]3 4,d p d pN p N     

when ( ) 1d

p
  and [ ] [ ]1 ,d p d pN p N      when 

( ) 1,d

p
   imply  (1),  due to the formula of number 

of points (5) and deduced from (5)  form ula (6) of  
affine points number of curve (2) 

[ ] ( 1) 1 2 .d p

d d d
N p p

p p p

     
           

     
 Since all 

transformations in pro of of Theorem  2.1. were 
equivalent transitions then we obtain the proof of 
equivalence of conditions.  

Theorem 2.2. If the coefficient 2d    or 12d    

and 3( mod 4)p    then 
1

2
2

1
0

( ) 0( mod )

p

j j
p

j d

d C p






  and 

[ ] 1d pN p  . 

Proof. When 3( mod  4)p  , we shall show that 

1
2

2
1

0

( ) 0( mod  ).

p

j j
p

j d

d C p






  We multiply each binomial 

coefficient in this sum  by 1( )!
2

p   to obtain after  

some algebraic manipulation  

1
2

1 1 1 1( )( 1) ( 1)( )!1 2 2 2 2( )!
2 1 2

1 1 1 1 1( )( 1) ( 1)[( )( 1) ...
2 2 2 2 2

( 1)].

j
p

p p p p
jp

C
j

p p p p p
j

j



   
  

 


    
     

 







After applying the congr uence 
2 21 1( ) ( 1 ) ( mod  )

2 2
p p

k k p
 

     with 

10
2

p
k


   to the multipliers in previous 

parentheses, we obtain 1 1[( )( 1) ( 1)]
2 2

p p
j

 
  .  

It yields 1 1 11 1
2 2 2

p p p
j

             
    

  

1
21 1 11 ( 1) .

2 2 2
[ ]

p
jp p p

j

            

   
  

Thus, as a result of squaring, we have: 

2 2 2
1

2
2

1 1 1(( ! ) ( 1) ( 2)
2 2 2

( 1) ( mod  ).

) j
p

p p p
C j j

p j p



  
     

  

      (7) 

It remains to  prove that 
1

2
2

1
0 2

( ) 2 0( mod  )

p

j j
p

j

C p






  if 

3( mod  4)p  . 

Consider the auxillary  polynomial 
1

2 22
10

2

1( ) ( !) ( ) .
2

p
j j
pj

p
P t C t






   We are going to show 

that (2) 0P   and the refore 1 0( mod  )pa p  . Using 
(7) it can  be shown that 

1 1
2 2 22 2

1 10 0
2

2 2

1( ) ( !) ( ) ( 1)
2

1( 2) ...( ) ( mod  )
2

p p
j j

p pj j

k

p
a P t C t k

p
k k t p

 

  


    


  

 
 

over .pF  We replace d   by t   in (1) such that we 
can research a more generalised problem. It should 

be noted tha t 
1 1 1 1

2 2 2 2( ) ( ) ( ( ) )
p p p p

P t Q t t t
   

    over 

,pF  where 1( ) ... 1pQ t t t      and 
1

2
p

 denotes the 
1

2
p  -th derivative b y ,t  where t   is new variable  

but not a coordinate of curve. Observe that 
11 ( 1)( ) ( 1) ( mod  )

1 1

p p
pt t

Q t t p
t t

 
   

 
 and 
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therefore the equality 
1 1 1 1( ) ( )1 2 2 2 2( ) ( 1)(( ) )

p p p p
pP t t t t

   
   holds over F .p   

In order to si mplify notation we let 1t    and 
( ) ( 1).R P   For the case  2t   we have 1.   

Performing this substitution leads the pol ynomial  
( )P t  of 2 to t he polynomial ( 1)R t   of 1.  Takin g 

into account the linear nature of the substitution  
1t   ,  it can be seen that that derivation by    

and t  coincide. Derivat ion leads us to the 
transformation of polynomial ( )R   to form where it 
has the necess ary coefficient p-1.a  Then 

1 1 1 1
12 2 2 2

1 1 1
2 2 2

( ) ( 1) ( 1) ( 1)

( 1)! ( 1) .
(( 1) / 2)!

( ( ) )
( )

p p p p
p

p p p

R P

p

p

   


  

         


   



    

 In order to prove that 1 0( mod  )pa p  , it is now 
sufficient to s  how that ( ) 0R    if 1   over pF . 

We obtain
1

2
10

2

( 1)! 1(1) ( 1) ( ).
1 2( )!

2

p
j
pj

p p
R C j j

p





 
  

    

We now will manipulate with the expression 
1 1 1 1( 1)( 2) ( ).

2 2 2 2
p p p p

j j j
   

       In 

order to ill ustrate the simplification we now 
consider the scena rio when 11p   and hence 

1 5.
2

p 
  The expression gets the f orm

5

(5 1)(5 2) (5 5) (6 )(7 ) (10 )

( 5 )( 4 ) ( 1 )

( 1) ( 1)( 2) ( 5) ( mod  11).

( )
( )

j j j j j j

j j j

j j j

          

       

    

 





Therefore, for a prime ,p  we can rewrite the 
expression as 

1
2

1 1 1 1( 1)( 2) ( )
2 2 2 2

1( 1) ( 1) ( )( mod  ).
2

p

p p p p
j j j

p
j j p



   
      


   





 

 As a result, the sy mmetrical terms in (7) can be 
reduced yielding 1 0( mod  )pa p  .  It should be 

noted that  
1

2( 1) 1
p

     since 3p Mk   and 
1 2 1

2
p

k


  . Consequently, we have 

(2) (1) 0P R   and henc e 1 0( mod  )pa p   as 

required. Thus, 
1

22
10

2

( ) 0( mod  ),
p

j
pj

C p



  completing 

the proof of t he of the theorem .  The com plexity of 
calculating of (1) is  2

2logO p p  that will be prove d 
in Theorem 2.4. 

Corollary 2.2. The curve dE  is supersingular iff 
1d

E   is supersingular.  
Proof. Let us recall the pr oved fact in Theorem 2.1 
that 

1
2

2
[ ] 2 2 1 1

0 2

( ) ( mod  ).

p

j j
d p p p p

j

d
N a a C d p

p



  


 
      

 
   

Since 2
1

2

( ) 0( mod  )j j
pC d p  by condition, and the 

congruence  
1

( ) ( )d d

p p



  holds, then according to  

(6) the number of poi nts on dE  is

[ ] 2 2 1 (mod )d p p p

d d
N a a p

p p 

   
        

   
, also 

1[ ] [ ]
.d p d p

N N    

Corollary 2.3. If 3(mod 4)p  , is pri me then 

[ ] 1 2d p

d
N p T

p

 
    

 
, where T  is such that 

1
2

2
1

0 2

( ) mod

p

j j
p

j

T C d p






   and 2T p . 

Proof. Due to equality (5) and the bounds (8) as well 
as according to generalized Has se-Weil theorem 

[ ]| ( 1) 2 | 2d p

d
N p g p

p

 
    

 
, where g  is genus of  

curve, we obtain exact num ber [ ]d pN .  As we 
showed, 1g  . From Theorem 2.1 as well as fro m 
Corollary 2.2 we get, tha t  

1
2

2
1 [ ]

0 2

( ) ( 1) 2

p

j j
p d p

j

d
C d N p

p






 
      

 
  so there exists 

,T Z such that 2T p  and 

[ ] 1 2d p

d
N p T

p

 
    

 
. 

Example 2.1. If 13p  , 2d   gives  2 13 8N   and 

13p  , 1 7d    gives that the number of points of 
7E  is  7[13] 20N  , which i s in contradi ction to t hat 

suggested by A. Bessalo v and O. Thsigankova. 
Moreover, if 7( mod  8)p  , then the order of torsion 
subgroup of curve is 12 2

3N N p   , which is 
clearly different to 1p   as suggested by A. 
Bessalov and O. Thsigankova.  

For instance 31,p   then 
12[31] 2 [31]

28 31 3,N N      which is  clearly not 

equal to 1.p   If 17, 2 (4mod  7)p d     then the 
curve 12

E   has four poi nts, namely 
       0,1 ;  0,6 ; 1,0 ;  6,0 , and the in c ase 7p   with 
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2( mod  7)d  , the curve 12
E   also has four points : 

       0,1 ;  0,6 ;  1,0 ;  6,0 , demonstrating the order  
in this scenario is 3p  . 

The following theorem shows that the total  
number of affine points u pon the Edw ards curves 

dE   and 1d
E   are eq ual under certain assu mptions. 

This theorem additionally provides us with a  
formula for enumerating the number of affine points 
upon the birationally isomorphic Montgomery curve 

MN . 
Theorem 2.3. Let d  satisfy the condition of  
supersingularity (1). If 1( mod  2)n   and p  is 
prime, then 

[ ]
1n

n

d p
N p   and the order of curve is 

equal to 
[ ]

1 2n

n

d p

d
N p

p

 
    

 
. 

If 0( mod  2)n   and p  is prim e, then the order of 
curve  

  2
[ ]

3 2( )n

n
n

d p
N p p    , and the or der of projective 

curve is equal to 2
[ ]

1 2( )n

n
n

d p
N p p    . 

If 0( mod  2)n   and p  is prim e, then the order of 
projective curve is equal to /2

[ ]
1 2( )n

n n

d p
N p p    , 

and the order of affi ne curve i s equal to  
/2

[ ]
3 2( )n

n n

d p
N p p    . 

Proof. We c onsider the extension of the base field  
pF   to np

F   in order to determ ine the number of the 

points on th e curve 2 2 2 21x y dx y   . Let  P x  
denotes a pol ynomial with degree  2m   whose 
coefficients are from pF  .To make the p roof, we 
take into account that it  is known [12]  that the 
number of solutions to 2 ( )y P x  over np

F  will have 

the form 1 11 ...n n n
mp      , where 1 1,..., m   , 

1
2| |i p . 

In case o f our supersingular curve, if  
1( mod  2)n   the num ber of points o n projective 

curve over F np
 is deter mined by the expression 

1 21n n np     , where n
i   and 1 2   , 

| |i p   that' s why 1 i p , 2 i p    with 
{1, 2}i . In the general case, it is known [ 12, 15,19] 

that 
1
2| |i p . The or der of the pr ojective curve is 

therefore 1np  . 
If 7( mod  8),p   then it is known from a result of 
Skuratovskii [10] that dE  has in its projective 

closure of th e curve singular points w hich are not 
affine and therefore [ ] 3n

d pN p  . 
If 3( mod  8)p  , then there are no singular 

points, hence [ ] [ ] 1n
d p d pN N p   . Consequently the 

number of points on the E dwards curve depends on  

( )d

p
 and is equal to [ ] 3n

d pN p   if 7( mod  8)p   

and [ ] 1n
d pN p   if 3( mod  8)p    where 

1( mod  2).n  We note that this is because the 
transformation of  (3)  i n dE  depends upon the 
denominator 2( 1)dx  . If 1( mod  2)n   then, with 
respect to t he sum of root of the c haracteristic 
equation for the Frobeniu s endomorphism 1 2

n n  , 
which in this case have the same signs, we  obtain 
that the number of points in the group of points of 
the curve is 1 21n n np      [19]. In more details 

1 2,  are eigen  values of Frobenius operator F  
endomorphism on etale cohomology over the finite 
field np

F , where F  acts of ( ).iH X  The number of 

points, in general cas e, are determined by Lefshitz 
formula:  

 F ( 1) (F ( ))n

i n i

p
X tr H X #  

where  F np
X#  is a num ber of points in  the 

manifold X  over np
F , nF  is co mposition of the 

Frobenius operator. In our case, dE  is considered as 
the manifold X  over np

F . 

For 0( mod  2)n    we a lways have, that every 
pd F  is a quadratic residue in np

F . Consequently, 

because of ( ) 1d

p
   four singula r points appe ar on 

the curve. Thus, the num ber of affine points is less 
by 4, i.e. 

2 2
[ ]

1 2 2( ) 3 2( ) .n

n n
n n

d p

d
N p p p p

p

 
         

 
  

Lemma 2.2. There exists birational iso morphism 
between dE  and ME , which is determ ined by 

correspondent mappings 1
1

u
x

u





 and 2u

y
v

 . 

Proof. To verify this statement in supersingular case 
we suppose that the curve 2 2 2 21x y dx y    

contains 1 2 d
p

p

 
   

 
 points ( , )x y , with coordinates 

over prime field F .p  Consider the transformation of  
the curve 2 2 2 21x y dx y    into the followi ng form 
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2 2 2( 1) 1.y dx x     Make the substitutions 1
1

u
x

u





 

and 2 .u
y

v
   We wil l call the special points of this 

transformations the point in w hich these 
transformations or inverse  transform ations are not  
determined. As a re sult the equation of curve the 
equation of the curve takes the form 

2 2

2 2 2

4 ( 1) 2( 1) ( 1) 4 .
(1 ) (1 )

u d u d u d u

v u u

    
 

 
  Multipl y 

the equation of the curve by 
2 2(1 ) .

4
v u

u

    As a result 

of the reduction, we obtain th e equation 
2 3 2( 1) 2( 1) ( 1) .v d u d u d u       We an alyze what 

new solutions appeared in the resulting equation in 
comparing with 2 2 2( 1) 1.y dx x    First, there is an 
additional solution (u, v) = (0, 0).  Second, if d  is a  
quadratic residue by modulo ,p  then the f ollowing 

solutions appear:     1 1
( 1) 2( , ) ,0 ,

1
d d

u v
d

   
    

2 2
( 1) 2( , ) ,0 .

1
d d

u v
d

   
    

  If 1d

p

 
  

 
 then as it 

was shown above t he order of  dE  is equal to 1p  . 

Therefore, in cas e 1d

p

 
  

 
 order of dE  appears 

one additional solution of from ( ,0)u  more exact it 
is point with coordi nates  0, 0  also two points 
(( 1;0), (1;0))  of dE have not images on ME in result 
of action of birational map on M .E  Thus, in this 
case, number of affine points on ME is equal to 

1 2 1p p    .  

If 1x    then equality 1
1

u
x

u





 transforms to form  

1 1u u    , or 1 1   that is i mpossible for >2.p  
Therefore point ( 1,0) have not an im age on ME . 
Consider the ca se 1.x   As a re sult of the 
substitutions (1 ) / (1 ), 2 /x u u y u v       we get the 
pair ( , )x y  corresponding to the pair ( , )u v  for which

2 3 2( 1) 2( 1) ( 1)v d u d u d u      . 
   If it occurs  that 0y  , then t he preimage having 
coordinates 0u   and v is not equal to 0 is suitable 

for the birational map 
v

u
y

2
 which implies that  

0u  and 0v . But  pair (u, v) of such form do not 
satisfies the equation of obtained in result of 
mapping equation of Montgomery curve 

udududv )1()1(2)1( 232  . The table of 

correspondence between points is the following: 
    

Special points of ME   Special points of dE

(0; 0) – 
 1 2

( ,0)
1

d d

d

  


  
– 

 1 2
( ,0)

1
d d

d

  


  
– 

(1, 2 )d   – 

(1, 2 )d  – 
– ( 1,0)   
– (1,0)   

Table 1: Special points of birational maping. 
 

The points  1 2
( ,0),

1
d d

d

  


 1 2
( ,0),

1
d d

d

  


      

(1, 2 )d , (1, 2 )d  exist on ME  only when ( ) 1.d

p


These points are element s of group which can be 
presented on Rie mann sphere over qF . The points 
(1, 2 )d , (1, 2 )d  (1, 2 )d  have not i mages on dE  
because of in denominator of transformations 

1
1

u
x

u





appears zero. By the same reason points  

 1 2
( ,0),

1
d d

d

  


  1 2
( ,0)

1
d d

d

  


 have not an  

images on d .E  If 1d

p

 
 

 
 then as i t was shown 

above the or der of dE  is equal to -3.p  Therefore 
order of ME is equal to p  because of 5  additional 
solutions of equation of  ME appears but 2 points 
(( 1;0), (1;0))  of dE  have not images on ME . These 
are 5 additional points ap pointed in ta bleau above. 
Also it exist s one infinit ely distant point on a n 
Montgomery curve. Thus, the order of ME  is equal 

1p   in this case as supersingular curve has. 
The proof if complicated.  
It should be noted that the supersingular curve dE  is 
birationally equivalent to the supersingular elliptic 
curve which may be presented in Montgomery form 

2 3 2( 1) 2( 1) ( 1) .v d u d u d u        As wel l as 
exceptional points [1] for the birational equivalence 
( , ) (2 / , ( 1) / ( 1)) ( , )u v u v u u x y    are in one to 
one correspondence to the affine point of order 2 on 

dE  and to the points in pro jective closure of dE . 
Since the form ula for num ber of affine  points o n 

ME   can b e applied to counting [ ]d pN . In such way 
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we apply this result [7, 12], to the ca se 2 ( ),y P x  
where ( )degP x m ,  3m  . The order 

[ ]nM p
N  of the 

curve ME  over kp
F   can be evaluated due to 

Stepanov [12, 15]. The r esearch tells us that th e 
order is 1 2[ ]

1 ,n

n n n

M p
N p     where n

i   and

1 2 ,n n    | |i p   with {1, 2}.i  Therefore, we 
conclude when 1( mod  2),n   we know the order of  
Montgomery curve is precisely 

[ ]
1.n

n

M p
N p    

  This result leads us to  the conclusion that the  
number of solutions of  2 2 2 21x y dx y    as well as 

2 3 2( 1) 2( 1) ( 1)v d u d u d u       over the  finite 
field np

F  are determined by the expression 

1 21n n np     if 1( mod  2).n    
Example 2.2. The elliptic  curve presented in the 
form of Mont gomery 2 3 2: 6ME v u u u    is 
birationally equivalent [ 1] to the curve 

2 2 2 21 2x y x y    over the field kp
F . 

Corollary 2.4. If 2,d  1( mod  2)n    and 
3( mod  8)p  , then the order of curve dE  and order 

of the projective curv e are the  following: 
[ ] [ ]

1, 1.n n

n n

d p d p
N p N p      

If 2d  , 1( mod  2)n   and 7( mod  8)p  , then the  
number of points of projective curve is  

[ ]
1,n

n

d p
N p   

and the number of points on affine curve dE  is also 

[ ]
3.n

n

d p
N p   

In case = 2d , 0(mod 2)n  , 3(mod 4)p  , the 
general formula of the curves order is  

2
[ [

= 3 2( ) .
n

n
nd p

N p p    

The general formula for 0(mod 2)n   and = 2d  for 
the number of points on projective curve for the  
supersingular case is  

2[ ] = 1 2( ) .
n

nnd pN p p    
Proof. We denote by 

[ ]nM p
N  the order of the curve 

ME  over np
F . The order 

[ ]nM p
N  of ME  over np

F  can 

be evaluated [ 6] as 1 2[ ]
= 1n n n

nM p
N p     , where 

n
i  C  and 1 2=n n  , | |=i p  with {1, 2}i . For 

the finite alg ebraic extension of degree n , we will 
consider 1 2 =n n n np p    if 1(mod 2)n  . 
Therefore, for 1(mod 2)n  , the o rder of th e 
Montgomery curve is precisely  given by 

[
= 1]

n
nM p

N p  . Here's one infinitely remote point as 

a neutral element of the group of points of the curve. 
Considering now an elliptic curve, we have 

1 2=   by [5], which leads to 1 2 = 0  . For = 1n , 
it is clear that =MN p . When n  is odd, we have 

1 2 = 0n n   and therefore , = 1n
M nN p  . Because n  

is even by  initial assu mption, we shal l show that 
2

[ ]
= 1 2( )

n
n

nM p
N p p    holds as required. 

Note that for = 2n  we can express the number as 
 222[ = 1 2 = 1]d pN p p p    with respect to 

Lagrange theorem have to be divisibl e on [ ]d pN . 
Because a group of 2( )d p

E F  over square exten sion 

of pF  contains the group  (F )d pE  as a proper 
subgroup. In fact, according to Theorem 1 the order 

(F )d pE  is 1p   therefore divisibility  of orde r 

2(F )d p
E  holds because in our case = 7p  thus 

2= 8Ed
N  and [7]1 = 8 = dp N [16]. The following 
two examples exemplify Corollary 2.4. 
Example 2.3. If 3( mod  8)p   and 2n k  then we 
have when 2d  , 2n  , 3p   that the num ber of 
affine points equals to 

22
2[3] 3 2( ) 3 3 2 ( 3) 12,

n
nN p p            

and the n umber of pr ojective points is equal t o 
22

2[3] 1 2( ) 3 1 2 ( 3) 16.
n

nN p p            
Example 2.4. If 7( mod  8)p   and 2n k  then we 
have when 2d  ,  2n  , 7p   that the num ber of 
affine points equals to 

22
2[7] 3 2( ) 7 3 2 ( 7) 60,

n
nN p p           and the 

number of projective poi nts is equal t o 
22

2[7] 1 2( ) 7 1 2 ( 7) 64.
n

nN p p           
The group of points of  the supersingular curve dE   

contains 1 2 d
p

p

 
   

 
  affine points a nd the affine  

singular points whose number is 2 2.d

p

 
 

 
   

The singular points were discovered in [ 10] and 
hence if the curve is free o f singular points then the 
group order is 1p  .  
Example 2.5.  The number of curve points over 
finite field when = 2d  and = 31p  is equal to 

2[31] 12 [31]
= = 3 = 28N N p  . 
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Theorem 2.4. The order of Edwards curve over pF  

is congruent to 
1

1 2
22[ ] 1

=0 2
1

1 2
22

1
=0 2

( 1 2 ( 1) ( ) )

(( 1) ( ) 1 2 )(mod ).

p
p

j j
d p p

j

p
p

j j
p

j

d
N p C d

p

d
C d p

p











 
      

 

 
     

 





 

The true value of [ ]d pN  lies in [4;2 ]p  and is even.   
Proof. This result follows fro m the num ber of 

solutions of the equation 2 2 2= ( 1)( 1)y x dx   over 
pF  which equals to 

 

 

2 2 2 21 1

=0 =0

1
1 12

2 22 2

=0

1
1 2

22
1

=0 2

( 1)( 1) ( 1)( 1)) 1 ( ))

( ( 1) ( 1) ) mod

(( 1) ( ) ( )) mod .

p p

x x

p
p p

j

p
p

j j
p

j

x dx x dx
p

p p

x dx p

d
C d p

p

 


 






    
    

 

   

  

 





The quantity of solutions for 2 2 2 2= 1x y dx y   
differs from the quantity of 2 2 2= ( 1)( 1)y dx x   

by ( ) 1d

p
  due to new solutions in the from 

( ,0), ( ,0)d d . So this quantity is such  

 

 

2 21

=0

2 21

=0

1
1 12

2 22 2

=0

1
1 2

22
1

=0 2

( 1)( 1)) 1 ( ) 1

( 1)( 1)( )) ( ) 1

( ( 1) ( 1) ( ) 1) mod

( 1) ( ) (2( ) 1) mod .

p

x

p

x

p
p p

j

p
p

j j
p

j

x dx d

p p

x dx d
p

p p

d
x dx p

p

d
C d p

p






 






    
      

  
  

    
 

     

   









 

According to Lemma 1 the last sum 

 
1

1 12
2 22 2

=0
( ( 1) ( 1) ) mod

p
p p

j

x dx p


 

   is congruent to 

1 2 2 ( )p pa a mod p   , where ia  are the coefficients 
from presentation  

1 1
2 2 2 22 2

0 1 2 2( 1) ( 1) = ... .
p p

p
px dx a a x a x

 


    

Last presentation was obtained  due t o 

transformation 
1 1 11

2 2 22 2 2
1

=0 2
11

2 2
1

=0 2

( 1) ( 1) = ( ( 1) )

( ( 1) ).

p p pp kk k
p

x

pp jj j j
p

x

x dx C x

C d x

   



 



  






 

 Therefore 2 2pa   is equal to 
1

2 ( )(mod )
p d

d p
p



  

and 
11

2 22
1 1=0

2

= ( ) ( 1)
pp

j j
p pj

a C d


   . 

According to Newton's binom ial formula 1pa   
equal to the coefficient at 1px   in the product of two 
brackets and when substituting this d  instead of 2 is 
such  

1
1 2

22
1

=0 2

( 1) ( ) ,

p
p

j j
p

j

d C




   

that is, it has the form o f the poly nomial 
with inverse order of coef ficients. Indeed, we have 
equality  

1
1 1 1 12 ( ) 22 2 2 2
1 1

=0 2 2
1 1

1 1 12 2
22 2 2

1 1 1
=0 =02 2 2

( )( 1) ( ) ( 1) =

= ( 1) = ( 1) ( ) .

p
p p p p

j j jj j
p p

j

p p
p p p

jj j j j
p p p

j j

d C C

d C C d C


   
   

 

 
  



  

  

  



 

  

In form of a su m it is the following 
1

1 1 1 12 ( ) 22 2 2 2
1 1

=0 2 2

2 ( )( 1) 2 ( ) ( 1) =

p
p p p p

j j jj j j
p p

j

C C


   
   

      

1 1
1 1 12 2

22 2 2
1 1 1

=0 =02 2 2

= ( 1) 2 = ( 1) 2 ( ) .

p p
p p p

jj j j j
p p p

j j

C C C

 
  



     

over Fp  equals to 1 2 1 ( ) =d d d
p p

p p p

     
         

     
 

and differs fro m the quantity of solutions of  
2 2 2 2= 1x y dx y   by ( ) 1d

p
  due to new solutions of 

2 2 2= ( 1)( 1)y dx x  . Thus, in general c ase if 
11

2 22
1 1=0

2

= ( ) ( 1) 0
pp

j j
p pj

a C d


     we have

 

1
1 12

22 2
1 1

=0 2 2
1

1 2
22

1
=0 2

1
1 2

22
1

=0 2

= ( ( ) (( ) 1) ( 1) ( ) )

( 1 ( 1) ( ) 2( ))

(( 1) ( ) 1 2( )) mod .

p
p p

j j j
E p pd

j

p
p

j j
p

j

p
p

j j
p

j

d d
N p C C d

p p

d
p C d

p

d
C d p

p


 



 











     

     

   






The exact order is not les s than 4 beca use cofactor 
of this curve is 4. To determine the order is uniquely 
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enough to take into acco unt that p  and 2 p  have 
different parity. Taking into account that the order is 
even we chose a term p  or 2 p , for the su m which 
define the order. 

Let us analyze the complexity of calculating the  

value of 
1

2
2

1
=0 2

( )

p

j j
p

j

C d



 .   B inomial coefficients of the 

form 1
2

l
pC   we calculate recursively  having 1

2

l
pC   we 

get 1
1

2

l
pC 
 . Such a transformation can be done by  one 

multiplication of one division. But division can be 
avoided by applying the Legendre formula to count  
the number of occurrences of all prime factors from 
2 to ( 1) : 2p  .  In b oth cases, the co mplexity of 
calculating all the coeffici ents from the sum (3) is 

equal to  2
2

1( log )
2

p
O p

 . Squaring the  calculated 

binomial coefficient 1
2

j
pC   also does not exceed  

 2
2logO p . Calculate all values of modjd p  

optimally applying recursive multiplication 1jd   on 
d  for thi s we use the Ka ratsuba multiplication 
method requiring 2log 3

2(log )O p , than apply the 
Barrett method of modular multip lication. 
Therefore, the com plexity of computing th e 
entire tuple of degrees  , 1,....,jd j n  is

2log 3
2

1( log )
2

p
O p

 .   T otally we obtai n 

2
2

1( log ).
2

p
O p

  

Theorem 2.6. If = 1d

p

 
 
 

, then the orders of the 

curves dE  and 1d
E  , satisfies to the following 

relation 1 = .d d
E E   

If = 1d

p

 
 

 
, then dE  and 1d

E   are pair of twisted  

curves i.e. orders of curves dE  and 1d
E   satisfies to 

the following relation of duality  

1 = 2 2.d d
E E p   

Let the curve be defined b y 
2 2 2 2= 1 ( )x y dx y modp  , then we can express 2y  in 

such way:  

 
2

2
2

1  .
1

x
y mod p

dx





                              (9) 

 

For 2 2 1 2 2= 1 ( )x y d x y modp   we could obtai n 
that 

 
2

2
1 2

1  
1

x
y mod p

d x





                           (10) 

If = 1d

p

 
 
 

, then for the fixed 0x  a quantit y of y  

over Fp  can be calcul ated by the for mula 
2

1 2
1

1( ) 1

x

d x
p




   for x  such that 1 2 1 0(mod )d x p   . 

For solution 0 0( , )x y  to (10), we have the equality 

 
2

2 0
0 2

0

1
 

1
x

y mod p
dx





 and we express  

2 2

2
0 02 1 1 10

0 2 2
12

0
0 0

1 11  1  11  
       .

1 1 1 11   1  1

x xx
y d d d

ddx d x x

  



   
     

     
        
   

 

Observe that  

2 2 2
2

1 2 1 2

2

1( 1)1 1= = = .
1 1 (( ) 1)

x x xy d
dd x d x
x

 

 
  

                (11) 

Thus, if 0 0( , )x y  is solution of  (2), then 

0

0

1 , 
y

x d

 
 
 

 is a solution to (10) because  last 

transformations determines that 
2

1
2

00
2

0

1  1
y

 .
1  1

d
x

modp
d

x

  
 

 
 

 
 

 Therefore last 

transformations    0
0 0

0

1,  ( , ) = , 
y

x y x y
x d

  

determines isomorphism and bijection. 

In case = 1d

p

 
 

 
, then every  Fpx  is such that 

2 1 0dx    and 1 2 1 0d x   . If 0 0x  , then 0x  
generate 2 solutions of (2) iff 1

0x  gives 0 solution s 
of (10) because of (11) yields the following relation 

2 2 2

1 2 2 2
1 1 1

1 1 1( ) = ( )( ) = ( ).

x x x
dd x dx dx

p p p p

 

  

  
           (12) 

Analogous reasons give us that 0x  give exactly 
one solution of (2) iff 1

0x  gives 1 solutions of (10).  
Consider the set {1,2,...., 1}x p   we obtain that the 
total amount of solution s of form 1

0 0( , )x y  that 
represent point of (2) and pairs of form 0 0( , )x y  that 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.25 Ruslan Skuratovskii, Volodymyr Osadchyy

E-ISSN: 2224-2880 262 Volume 19, 2020



represent point of curve (10) is 2 2p  . Also we 
have two solutions of (2) of form (0,1)  and (0, 1)  
and two solutions of (10)  that has form (0,1)  and 
(0, 1) . The proof is fully completed. 
Example 2.6. The number of  points of dE  over pF  

for = 13p  and = 2d  is given by 2[13] = 8N . In the 

case when = 13p  and 1 = 7d   we have that the 

number of points of 7E  is 7[13] = 20N . Therefore, we 

have that the sum of orders for these curve is equal 
to 28 = 2 13 2   which confirms our theorem. The set 
of points over 13F  when = 2d  are precisely 
{(0,1);(0,12);(1,0);(4, 4);(4,9);(9,4);(9,9);(12,0)},  

while for = 7,d  we have the set (0,1);(0,12);(1,0);  

(2, 4);(2,9);(4,2);(4,11);(5,6);(5,7);(6,5);(6,8);(7,5);
(7,8);(8,6);(8,7);(9,2);(9,11);(11,4);(11,9); (12,0) .   
Example 2.7. If = 7p  and 1= 2 4(mod7)d   , then 

we have ( ) = 1d

p
 and the curve 12

E   has four points 

which are (0,1);(0,6);(1,0);(6,0).  and the in case 

= 7p  for = 2(mod 7)d , the curve 12
E   also has four 

points which are (0,1);(0,6);(1,0);(6,0) .   
Definition 2.1. We call the embedding degree a 
minimal power k  of a finite field extension such that 
the group of points of the curve can be embedded in 
the multiplicative group of F kp

.   

Let us obtain conditions of em bedding [14] 
for the grou p of supersingular curves [F ]d pE  of 
order p  in the multiplicative group of  field kp

F  

whose embedding degree is = 12k  [14]. We now  
utilise the Zsigmondy theorem which implies that a 
suitable characteristic of field pF  is an arbitrary 
prime p  which do no t divide 12  and satisfi es the 
condition 12P ( )q p , where 12P ( )x  is the cy clotomic 
polynomial. This p  will satisfy the necessary 
conditions ( 1) |nx p  for an arbitrary = 1,...,11n . 
Proposition 2.1 The degree of embedding for the 
group of a supersingular curve dE  is equal to 2.   
Proof. The o rder of the group of a supersingular  
curve dE  is equal to 1kp  . It sho uld be observed 
that 1kp   divides 2 1kp  , but 1kp   does not 
divide expressions of the form  2 1lp   with <l k . 
This division does not wo rk for smaller values of l  
due to the  decomposition of the expression 

2 1 = ( 1)( 1)k k kp p p   . Therefore, we can use t he 
definition to conclude that the degree o f embedding 
must be 2, confirming the proposition. 

Consider 2E  over 2F
p

, for instance we 

assume = 3p . We define 9F  as 3F ( ) , where   is a 
root of 2 1 = 0x   over 9F . Therefore elements of 9F  
have form: a b  , where 3, F .a b  So we assume 
that { ( 1), ( 1), }x         and check its  
belonging to 2E . For instance if = ( 1)x    then 

2 2= 2 1 = 2 =x       . Also in this case 
2 2 1 (2 1)( 1) (2 1)( 1)= = = = = .

1 ( 1)( 1) ( 1)( 1) 2
y

    
     

      
    

 

Therefore the correspondent second coordinate is  
= ( 1)y   . The si milar computations lead us to 

full the following list of curves points. 
 
x 1  0 ( 1)      ( 1)   
y 0 1  ( 1)     ( 1)   

Table 2: Points of Edwards curve over square extension. 
 
The total amount is 12 affine poin ts that confirms 
Corollary 2.4. and Theore m 2.3. because of   

223 2( ) = 3 3 2( 3) = 12
n

np p      . 

  
4 Conclusion 

The new effective algorithm  for the elli ptic and 
Edwards curves order curve counting was founded. 
The criterion for supersingularit y of t hese curves 
was additionally obtained.   
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